Integration testing is a systematic technique for constructing the program structure while at the same time conducting tests to uncover errors associated with interfacing. The objective is to take unit tested components and build a program structure that has been dictated by design.
There is often a tendency to attempt non incremental integration; that is, to construct the program using a “big bang” approach. All components are combined in advance. The entire program is tested as a whole. And chaos usually results! A set of errors is encountered. Correction is difficult because isolation of causes is complicated by the vast expanse of the entire program. Once these errors are corrected, new ones appear and the process continues in a seemingly endless loop.
Incremental integration is the antithesis of the big bang approach. The program is constructed and tested in small increments, where errors are easier to isolate and correct; interfaces are more likely to be tested completely; and a systematic test approach may be applied. In the sections that follow, a number of different incremental integration strategies are discussed.
Top-down Integration:
Top-down integration testing is an incremental approach to construction of program structure. Modules are integrated by moving downward through the control hierarchy, beginning with the main control module (main program). Modules subordinate (and ultimately subordinate) to the main control module are incorporated into the structure in either a depth-first or breadth-first manner.
The integration process is performed in a series of five steps:
What are the steps for top-down integration?
1. The main control module is used as a test driver and stubs are substituted for all components directly subordinate to the main control module.
2. Depending on the integration approach selected (i.e., depth or breadth first), subordinate stubs are replaced one at a time with actual components.
3. Tests are conducted as each component is integrated.
4. On completion of each set of tests, another stub is replaced with the real component.
5. Regression testing (Section 18.4.3) may be conducted to ensure that new errors have not been introduced.
The process continues from step 2 until the entire program structure is built.
The top-down integration strategy verifies major control or decision points early in the test process. In a well-factored program structure, decision making occurs at upper levels in the hierarchy and is therefore encountered first.
If major control problems do exist, early recognition is essential. If depth-first integration is selected, a complete function of the software may be implemented and demonstrated. For example, consider a classic transaction structure in which a complex series of interactive inputs is requested, acquired, and validated via an incoming path.
The incoming path may be integrated in a top-down manner. All input processing (for subsequent transaction dispatching) may be demonstrated before other elements of the structure have been integrated. Early demonstration of functional capability is a confidence builder for both the developer and the customer.
RELATED POST
UNIT TESTING PART ONE
UNIT TESTING PART TWO
UNIT TESTING PART THREE
GUI TESTING
WINDOWS COMPLIANCE GUI TESTING PART ONE
WINDOWS COMPLIANCE GUI TESTING PART TWO
WINDOWS COMPLIANCE GUI TESTING PART THREE
WINDOWS COMPLIANCE GUI TESTING PART FOUR VALIDATION TESTING
WINDOWS COMPLIANCE GUI TESTING PART FIVE CONDITION TESTING
WINDOWS COMPLIANCE GUI TESTING PART SIX GENERAL CONDITION TESTING
CONDITION TESTING
TESTING CONDITIONS PART ONE
TESTING CONDITIONS PART TWO
TESTING CONDITIONS PART THREE
TESTING CONDITIONS PART FOUR
SPECIFIC FIELD TESTING
USABILITY TESTING
INTEGRATION TESTING
INTEGRATION TESTING PART ONE
INTEGRATION TESTING PART TWO
INTEGRATION TESTING PART THREE
INTEGRATION TESTING PART FOUR
INTEGRATION TESTING PART FIVE
INTEGRATION TEST STANDARDS
INTEGRATION TEST STANDARDS PART TWO
No comments:
Post a Comment