Quality is defined as "a characteristic or attribute of something." As an attribute of an item, quality refers to measurable characteristics— things we are able to compare to known standards such as length, color, electrical properties, and malleability. However, software, largely an intellectual entity, is more challenging to characterize than physical objects.
Quality of design refers to the characteristics that designers specify for an item.
The grade of materials, tolerances, and performance specifications all contribute to the quality of design. As higher-grade materials are used, tighter tolerances and greater levels of performance are specified, the design quality of a product increases, if the product is manufactured according to specifications.
Quality of conformance is the degree to which the design specifications are followed during manufacturing.
Again, the greater the degree of conformance, the higher is the level of quality of conformance.
“In software development, quality of design encompasses requirements, specifications, and the design of the system. Quality of conformance is an issue focused primarily on implementation. If the implementation follows the design and the resulting system meets its requirements and performance goals, conformance quality is high.”
User satisfaction = compliant product + good quality + delivery within budget and schedule
What is software quality control?
Variation control may be equated to quality control. But how do we achieve quality control? Quality control involves the series of inspections, reviews, and tests used throughout the software process to ensure each work product meets the requirements placed upon it. Quality control includes a feedback loop to the process that created the work product. The combination of measurement and feedback allows us to tune the process when the work products created fail to meet their specifications. This approach views quality control as part of the manufacturing process.
Quality control activities may be fully automated, entirely manual, or a combination of automated tools and human interaction. A key concept of quality control that all work products have defined, measurable specifications to which we may compare the output of each process. The feedback loop is essential to minimize defects produced.
3.1
RELATED POST
SOFTWARE QUALITY ASSURANCE AND CONTROLSOFTWARE QUALITY AND COST ASPECT
STABLE PROCESS OF SOFTWARE TESTING
STABLE PROCESS OF SOFTWARE TESTING PART TWO
DEFECTS IN SOFTWARE TESTING
REDUCTION OF DEFECTS IN SOFTWARE TESTING
SOFTWARE TESTING AND EFFECTING FACTORS
SCOPE OF SOFTWARE TESTING
TESTING LIFE CYCLE PART ONE
TESTING LIFE CYCLE PART TWO
TESTING LIFE CYCLE PART THREE
SOFTWARE TESTING AND CONSTRAINTS WITH IN IT
TESTING CONSTRAINTS PART TWO
LIFE CYCLE TESTING
TEST METRICS
Independent Software Testing
Test Process
Testing verification and validation
Functional and structural testing
Static and dynamic testing
V model testing
Eleven steps of V model testing
Structural testing
Execution testing technique
Recovery Testing technique
Operation testing technique
Compliance software testing technique
Security testing technique
Here i am adding the further topics list on software testing subject and the topics may be scattered and you can find under different groups.
MAJOR SYSTEM FAILURES IN THE HISTORY
WHAT IS A SOFTWARE BUG ?
ROLE OF A TESTER
SOFTWARE TESTING INTRODUCTION PART ONE
TESTING INTRODUCTION PART TWO
TESTING INTRODUCTION PART THREE
TESTING INTRODUCTIONS PART FOUR
SOFTWARE TESTING FUNDAMENTALS
SOFTWARE TESTING FUNDAMENTALS PART TWO
SOFTWARE TESTING FUNDAMENTALS PART THREE
No comments:
Post a Comment